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ABSTRACT 

Suppose G is a group of measurable transformations of a a-finite measure 

space (X, .4, m). The main result of this paper gives necessary and suffi- 

cient conditions for the existence of a G-invariant, a-finite measure defined 

on .4 and dominating the measure m in the sense of absolute continuity. 

An example is also given of a a-finite nonatomic measure space 

(X, "4, m) together with a countable group G of its measurable transfor- 

mations such that no G-invariant, a-finite nonatomic measure exists on 

"4. Whether the Lebesgue space ([0, I], £, A) provides such an example, 

depends on set-theoretic assumptions. 

1. I n t r o d u c t i o n  

This paper may be viewed as a continuation of [15], where the problem of exis- 

tence of invariant, probability measures was discussed. In the present paper the 

attention is shifted to a-f ini te  measures. 

As pointed out in [15], we approach the problem from two different but closely 

related points of view. 

(A) Motivated by ergodic theory one tries, given a group G of measurable 

transformations of a a-finite measure space (X,,4, m), to find necessary and 
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sufficient conditions for the existence of a G-invariant measure # defined on -4 

and dominating rn in the sense of absolute continuity (see [5, p. 81]). 

(B) Influenced by Tarski's work on finitely additive invariant measures one 

searches for "purely combinatorial" conditions for the existence of an arbitrary 

G-invariant measure, when only a group G of bijections of a set X and a G- 

invariant a-algebra .4 of subsets of X are given (see [13, p. 136]). 

However, for reasons explained in [15], the two approaches lead to closely 

related results. 

The prototype of such results is a classical theorem by Hopf [7]. For a cyclic 

group G of measurable transformations of a measure space (X, .4, rn) with a G- 
quasi-invariant, a-finite measure rn, HHopf formulated the notion of boundedness 

of a set and showed that the condition that X is bounded is necessary and 

sufficient for the existence of a G-invariant, probability measure equivalent with 

m .  

Kawada [81, Hajian and Ito [41, and Chuaqui [21 generalized Hopf's theorem 

to arbitrary groups of measurable transformations of (X, .4, m), and the author 

freed their results from the assumption that m is G-quasi-invariant [15, Theorem 

3.1]. 

Kawada [8] found another generalization of Hopf's theorem. He proved that for 

an arbitrary group G of measurable transformations of a measure space (X, .4, m) 

with a G-quasi-invariant, a-finite measure m, the condition that X is a-bounded, 

i.e. it is the countable union of measurable sets, bounded in the sense of Hopf, 

is necessary and sufficient for the existence of a G-invarimlt, a-finite measure 

equivalent with m. This result, for the special case of a cyclic G, was later 

rediscovered by Halmos [6] who also noticed that in this case the assumption 

that the measure m is G-quasi-invariant may be omitted if we want the resulting 

invariant measure only to dominate m. 

The main result of this paper generalizes the results of Kawada and Halmos 

to arbitrary groups of measurable transformations of any a-finite measure space 

(X,.4, m) (Theorem 3.1). The new element that arises here is the necessity of 

adding to the condition that X is a-bounded another property, which guarantees 

the existence of a G-quasi-invariant measure dominating m (and hence is super- 

fluous if m is assumed to be G-quasi-invariant). As a corollary a generalization 

of a related result by Arnold [1] is obtained (Theorem 3.3). 

Next we consider the special case when G is countable and discuss the ques- 
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tion of existence of an arbitrary, i.e. not necessary related to m, G-invariant, 

a-finite measure on .A. An example is given of a nonatomic measure space whose 

underlying a-algebra carries no such (nonatomic) measures for a certain count- 

able group G of its measurable transformations (Proposition 4.2). The problem, 

whether just the ordinary Lebesgue space ([0, 1],/~, A) could serve as such an 

example, turns out, however, to depend on additional set-theoretic assumptions 

(Proposition 4.4). On the other hand, if we consider only the a-algebra B of 

Borel subsets of [0,1], then for every countable group of Borel autonmrphisms of 

[0,1] an invariant, a-finite measure always exists on B (Proposition 4.3). 

Kawada [8] is not quoted in any of important later papers [6], [4], [2], [1] on 

the subject. I apologize for not mentioning his name in the earlier version [16] 

of this work and for mistakenly attributing one of his results to myself (see [16, 

Theorem 3.1.B]). 

sets En E ,4, n E N, 

terminology of [15], X 

sets. 

2. Definitions and preliminaries 

We keep the notation and definitions of [15]. 

For the rest of this section let G be a group of measurable transformations of 

a a-finite measure space (X, .4, m). 

A set Z E ~4 is called G-bounded with respect to m (or, simply, bounded, 

if G and m are clear from the context), if Z - .~  A implies m ( Z \ A )  = 0 for 

every A E A, A C_ Z, i.e. Z is not countably G-equidecolnposable in A with any 

measure-theoretically proper measurable subset of itself (see [7]). 

It is not difflctdt to prove that Z is bounded iff the measure m vanishes on all 

measurable subsets E of Z with the property that Z contains pairwise disjoint 

with each E ,  - ~  E (see [8, Lemma 5]. Hence, in the 

is bounded iff m vanishes on all G-negligible measurable 

We shall later use the following local version of Theorem 3.1 from [15]. 

Proposition 2.1: For every set Z E .,4 of positive measure the following condi- 

tions are equivalent: 

(i) Z is G-bounded with respect to m, 

(ii) There exists a probability measure I~ on A such that l~ is G-invariant on Z, 

/~(Z) = 1 and t'or every E C_ Z, m(E)  = 0 whenever t ,(E) = O. 

If, additionally, m is G-quasi-invariant on Z, then (i) is equivalent to: 
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(iii) There exists a probability measure g on ,4 such that tt is G-h2variant on Z, 

#(Z) = 1 and for every E C_ Z, re(E) = 0 iff # (E)  = O. 

Proof: Clearly, (ii) ~ (i) and (iii) ~ (i). 

To prove the converse implications, find a group G of measurable transforma- 

tions of the measure space (Z, AA 79(Z), m t A M P ( Z ) ) ,  where 7~(Z) denotes the 

power set of Z, with the following property: if A and B are measurable subsets 

of Z, and .~A = B for a certain ~ E G, then A is countably G-equidecomposable 

with B in .4 (see [14, the proof of Theorem 2.6]). 

Note that Z is G-bounded with respect to m [ .4 fl 7~(Z). Hence by [15, 

Theorem 3.1], there exists a G-invariant, probability measure/~ on A fq P ( Z )  

such that for every A E .4 n P(Z) ,  p(A) = 0 iff m(~A) = 0 for every ~ E G. 

Finally, define/~ by: 

# ( A ) = p ( A f q Z )  f o r A E A .  

The measure # has all the required properties. | 

We say that X is a - G-bounded with respect to m (or, simply, a-bounded), 

if X is the countable union of measurable bounded sets. 

Kawada [8, Satz 2] proved that if tile mea.sure m is G-quasi-invariant, then the 

condition that X is a - G-bounded is necessary and sufficient for the existence 

of a G-invariant, a-finite measure on .,4 equivalent with m. 

The following is an extended version of Lemma 3.2 fl'om [15]. 

PROPOSITION 2.2: If  m is G-quasi-invariant (resp. G-invariant) on a set Z of 

positive measure and the a-ideal Ia(  Z)  is a-saturated in .4, then there exists a G- 

quasi-invariant (resp. G-invariant), a-finite measure u on .4 sud~ that Iv = Ia(  Z)  

and u ( X \ Z * )  = 0, where Z* = l.J,, g,,Z for certain functions g,, from G. 

Proof." Let/C = {Dn} be a maxinml fanfily of pairwise disjoint, measurable sets 

with associated functions hn E G such that h,,D,, C_ Z and 0 < m(h,,D,,) < oo 

for every n. 

Define u by: 

u(a)  = E m(h,,[A ¢3 D,,]) for A E A. 
I I  

Clearly, u is a measure on .,4 and: 

(1) v ( x \ U  D ,  ) = O. 
n 
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Hence t, is a-finite and it suffices to let gn = h~ ~ for each n to have v(X\Z*)  = 

0 for Z* = ~J,~ g,Z.  

Since it was already proved in [15] that  if m is G-quasi-invariant on Z, then 

u is G-quasi-invariant and I~ = IG(Z), the only new detail is to show that  the 

G-invariance of m on Z implies the G-invariance of v. 

So assume that  m is G-invariant on Z. 

To prove that  t~ is G-invariant, take arbitrary A E .A and g E G, and consider 

first the special case in which A C_ Dk and gA C_ D,, for certain k and n. Then, 

by the definition of t, and the G-invariance of m on Z, 

u(gA) = m(hngA) = m(hkg-lh~, 1 h,gA) = m(hkA) = I/(A). 

For the general case, use (1), the G-invariance of u and the above to justify 

the following chain of equalities: 

v(gA) = Z v(gA N D,,) = Z ~j-~ ~(gA N D,, fq gDk ) 
n n k 

g D.  = Z Z v ( g [ A  N -1 n D k ] ) = Z ~ - ~ v ( A N g - 1 D , , N D k )  
n k n k 

= a g - l D , , ) =  
n 

Thus the measure u has all the required properties. | 

3. The existence o f  a n  i nva r i an t ,  a - f in i t e  m e a s u r e  d o m i n a t i n g  a g iven  

m e a s u r e  

In this section we prove the main result of this paper  which is formulated as 

follows. 

THEOREM 3.1: Let G be a group of measurable trea~sfonnations of a a-finite 

measure space (X, A, m). 

Then the following conditions are equivalent: 

(i) There exists a G-invariant, a-finite measure # oi2.4 such that m << p. 

(ii) X is a-G-bounded with respect to m and the a-ideal I o ( X )  is a-saturated 

inA .  

Proof: We first prove that  ( i )~(i i) .  
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To see that X is a-bounded with respect to m, consider a fanfily {Xn: n E N} 

of measurable sets of finite/t-measures such that X = U,,eN X,,. Note that since 

m <</t, each X ,  being bounded with respect to # is also bounded with respect 

to m. 

The second assertion of (ii) follows from the inclusion I~, C_ In(X) .  

To prove that (ii)=}(i) it suffices to establish the following. 

CLAIM: Condition (ii) implies that I n (X)  is the a-ideal of a G-invariant, a-finite 

measure p on A. 

Proof of the claim: The construction of IL is based on the following lemma which 

can be easily established by combining Propositions 2.1 and 2.2. 

LEMMA 3.2: If  m is G-quasi-hlvariant on a bounded set Z of positive measure and 

the a-ideal In(Z)  is a-saturated in .4, then there exists a G-invarim~t, a-finite, 

measure u on A such that Iv = In(Z)  emd u(X\Z*)  = 0, where Z* = U ,  g,,Z 

for certain functions gn from G. 

Assume now that X is a-bounded and the a-ideal In (X)  is a-saturated in .A. 

Note that [a(X)  C_ Ira. So, by [15, Proposition 2.1], there exists a set Y E ,4 

such that m ( X \ Y )  = 0 and m is G-quasi-invariant on Y. Since X is a-bounded, 

Y = [.J,,~N A,, for certain bounded sets A,  E A, n E N. 

Define by induction a new sequence < Z,, > of bounded subsets of Y of positive 

measures, associating with each Z,, a G-invariant, a-finite measure t,,, on A and 

a set Z,* by applying Lemma 3.2 to Z = Z,,. 

Let no = min{n: re(A,,) > 0} and set Z0 = A,0. 

Assume that k > 0 and Zi, ui, and Z~ are already defined for i < k. 

If m ( X \ U i <  k z*)  > 0, let nk = min{n: re(A,,\ Ui< k z*)  > 0} and set Z,, = 

A.~  \ Ui<k Z*. 

Z* If m ( X \  Ui<k i ) = 0, the procedure stops after only k steps. 

Finally, set/~ = ~ , ,  Un. 

Clearly,/~ is a G-invariant measure on ,4. 

It remains to check that # is a-finite and Ij, = IG(X). 

To prove the first assertion, notice that if i < k, then t,i(Z~) = 0. For if not, 

then since Iv, = Ia(Zi)  there is g E G such that m(Zi f3 gZ~) > 0. But since 

Z~ = U,, gnZt for certain countably many functions gn from G, this in turn 

implies that there is g' E G with m(Zi 13 g'Zk) > 0. Hence tq(Zt)  > 0, contrary 

to the fact that  Zt  fl Z* = 0 and ui(X\Z*)  = O. 



Vol. 83, 1993 INVAR1ANT a-FINITE MEASURES 281 

It follows that p, being the sum of countably many mutually orthogonal, a-  

f in i te  measures, is itself a-finite. 

For the second assertion, note first that m ( X \ U "  Z*) = 0, so IG(X) = 

Nn IG(Z~). But since m is G-quasi-invariant on Y and m ( X \ Y )  = O, IG(Z*) = 

IG(Zn) for each n. It follows that IG(X) = ['1,, Iv, = I~. 

This completes the proof of the claim and of the tlmorem. 1 

It is worth noting that by the above proof, if, under the hypotheses of Theorem 

3.1, the set of all G-invariant, a-finite measures on .,4 dominating the measure m is 

non-empty, then it has the least element in the sense of the partial (pre-)ordering 

<<. 

Let us briefly discuss the question, whether both assertions of condition (ii) of 

the above theorem are essential. 

In order to see that the implication "Ic;(X) is a-saturated =~ X is a-bounded" 

is false, consider any of the well known examples fi'om ergodic theory in which 

there is no G-invariant, a-finite measure equivalent with a given G-quasi-invariant 

measure m (a simple one is: X = the real l ine , / i  = the a-algebra of Borel subsets 

of X, m = the Lebesgue measure on A, G = the group of similarities of the form 

x ---, px + a, where p and a are rationals, p # 0--see [9, Example (~), p.159]). 

The converse implication is also easily seen to be false. Just consider X and 

.A as above, m = the {0,1}-valued measure concentrated on a point and G = 

the group of all translations. It is worth comparing this with the fact that the 

boundedness of X already implies that IG(X) is a-saturated (see [15, Lemma 

3.4]). 

Let us also recall that the condition "In(X)  is a-saturated" is equivalent to 

each of the following assertions (see [15, Lemma 3.3]): 

(i) There exists a G-quasi-invarimlt, a-finite measure p on A such that I~, -- 

In(X) .  

(ii) There exists a G-quasi-invariant, a-finite measure # on/1  such that m <<: p. 

Remark: The above equivalences suggest another method of proving the impli- 

cation (ii)=~ (i) of Theorem 3.1: take a measure/~ on A with I~, = I t ( X ) ,  show 

that X is a-G-bounded with respect to # and then apply Kawada's result. The 

proof presented in the paper seems, however, to provide a better insight to the 

problem. 

We conclude this section with the following corollary of Theorem 3.1, which 
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generalizes a theorem by Arnold [1, Theorem 1], giving another necessary and 

sufficient condition for the existence of an invariant, a-finite measure. 

THEOREM 3.3: Under the hypotheses of Theorem 3.1 the following conditions 

are equivalent: 

(i) There exists a G-invariant, a-finite measure # on .A such that m << #. 

(ii) The a-ideal I v ( X )  is a-saturated in A and for each e > 0 X is, up to a 

m-null set, the union of countably many pairwise disjoint measurable sets 

Xn such that for every n E N the following condition is satisfied: 

for every g E G and A E .4, i rA  C_ X,, and gA C_ X . ,  then 

m(A)/(1 + e) <_ m(gA) <_ (1 + e)m(A). 

(iii) The a-ideal I t ( X )  is a-saturated in ,4 and X is, up to a m-null set, the 

union of countably many paJrwise disjoint measurable sets X , ,  n E N, such 

that t'or every n E N the foI1owing condition is satisfied: 

there is kn > 0 such that for every g E G and A E ,4, if  A C_ Xn and 

gA C Xn, then m(ga)  >_ k ,  . re(A). 

Proof: To prove that ( i )~  (ii), first find Y E ,4 such that m ( X \ Y )  = 0 and m 

is G-quasi-invariant on Y. Then follow the proof of Theorem I from [1] to obtain 

a required decomposition of Y. 

The implication (ii)=~ (iii) is obvious. 

To prove that (iii):~ (i), note that under the hypotheses of (iii) the sets X , ,  

n E N, and the set X \  U.ENX~ are bounded. So, X is a-bounded and everything 

follows now from Theorem 3.1. | 

4.  T h e  e x i s t e n c e  o f  a n  a r b i t r a r y  i n v a r i a n t ,  a - f i n i t e  m e a s u r e  

Our next corollary of Theorem 3.1 generalizes Theorem 3.5 from [15] giving 

a solution to the problem of finding necessary and sufficient conditions for the 

existence of an arbitrary G-invariant, a-finite measure on .A, if ,4 is only assumed 

to be a G-invariant a-algebra of subsets of X. 

THEOREM 4.1: Let G be a group of bijections of a set X azld .4 a G-invariant 

a-algebra of subsets of X. 

Then the following conditions are equivalent: 

(i) There exists a G-invariant, a-finite measure on ,4. 
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(ii) There ex/sts a a-t~nite measure m on .4 and a set A E ,4 of positive m- 

measure such that A is bounded and the a - i d e a / I t ( A )  is a-saturated in 

,4. 

The usefulness of the above theorem for proving the existence of invariant 

measures is doubtful. However, in particular cases in which one already knows 

that  for certain other reasons a G-invarim~t, a-finite measure on ,4 does not 

exist, it gives interesting information about invariance (or rather: non-invariance) 

properties of a-finite measures on .A. 

To illustrate this point of view, let us consider the case when the group G is 

countable. 

Is it then possible that  .4 carries no G-invariant, a-finite measure at all ? 

We have to make two restrictions in order to avoid trivial answers. 

First, if A is an a tom of the a-algebra ,4 (i.e. A # 0 and A' E A, A' C A imply 

that  either A I = 0 or A t = A), then one immediately defines a G-invariant, a- 

finite measure on A concentrated on the set I..Jg6a gA. Hence we restrict ourselves 

to measures which vanish on all atoms of .4. From now on we assmne, moreover, 

that  A contains all singletons. In this case a measure which vanishes on all atoms 

of ,4 (=  the singletons of X)  is called nonatomic. 

Secondly, certain a-algebras carry no a-finite, nonatomic measures at all, even 

without the additional requirement of G-invariance. Hence we also assume that  

the set .h~ of all a-finite, nonatomic measures on .4 is non-eml)ty. 

Now we ask, whether it is possible that  every measure m E M is not G- 

invariant. Note that  if this is the case, then by Theorem 4.1, the group G must 

take care that  for each m E .M every set A of positive measure is not G-bounded 

with respect to m (the countability of G implies that  the a-ideal Ia(A)  is a- 

saturated in A - -  see [15, Proposition 2.2]). 

It turns out that  not only a countable but even a cyclic group can do the job. 

To give an appropriate example it is necessary to recall some standard defini- 

tions and facts from ergodic theory. 

We say that  a G-quasi-invariant, a-finite measure m on A is G-ergodic if A E .A 

satisfies m (gA \ A)  = 0 for all g E G only if re(A) = 0 or m ( X \ A )  = 0. It  is 

well known and easy to prove that  if ml is aamther G-quasi-invariant, a-finite 

measure on .A with ml << m and m is G-ergodic, then ml  = m. 

Our construction is based on the classical result by Ornstein (see [3, Example 

6.7, p. 83]), which states that  there exists a cyclic group H of measurable trans- 
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formations of the Lebesgue space ([0, 1], £, ,~) such that Lebesgue measure ,~ on 

the a-algebra £ of Lebesgue measurable subsets of [0,1] is H-quasi-invariant and 

H-ergodic but there is no H-invariant, a-finite measure ~t on £ equivalent with 

,~. 

THEOREM 4.2: There ex/st a set X,  a cyclic group G of bijections of X and a 

G-invariant a-algebra A of subsets of X containing all singletons such that .A 

carries a-finite, nonatomic measures but none of them is G-invariant. 

Proof.." Let Y be a subset of [0,1] such that A*(Y) > 0 but A*(A) = 0 for every 

A C [0, 1] of cardinality less than that of Y (A* denotes the Lebesgue outer 

measure) .  

Let H be the cyclic group of bijections of [0,1] given by Ornstein's result quoted 

above. 

Now let: 

x= UhY, g={hlX:heH}, .A={ENX:EE£}. 
hEH 

Note that the H-ergodicity of ,~ implies that $*(X) = 1. Hence the formula: 

m(E N X) = A(E) for E e £ 

properly defines a a-finite, nonatomic measure on .4. Moreover, the mea.sure m 

is G-quasi-invariant and G-ergodic. 

Suppose now, towards a contradiction, that It is a G-invariant, a-finite, nonato- 

mic measure on A. 

We claim tha t / t  << m. 

Indeed, otherwise there is a A-null set E E A with/~(E) > 0, so # restricted to 

measurable subsets of E is a a-finite, nonatomic measure defined on the power 

set of E.  But, by a result of Kunen, if there exists a a-finite, nonatomic measure 

defined on the power set of a set of cardinality t~, then there exists a subset of 

[0,1] of cardinality less than t¢ with positive outer Lebesgue measure (for a proof 

see [11, Theorem on page 478]). So, due to our cardinality assumption on Y, a 

contradiction is reached which proves the claim. 

Now, the H-ergodicity of m implies that in fact/~ = m. 

Define a measure ~ on £ by: 

p ( A ) = I t ( A f 3 X )  f o r A e £ .  
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Clearly,/] is H-invariant and a-finite. Moreover, p =- m implies that /~ = A. 

But this contradicts the choice of H, completing the proof that X, G and ,4 have 

all required properties. | 

It seems natural to ask whether we could find an example as above with simply 

X = [0,1] and: 

either 

(1) ,4 = B, the a-algebra of Borel subsets of [0, 1] 

or  

(2) .4 = c .  

It turns out that the answer is "no" in case (1) and, somewhat surprisingly, in 

case (2) it depends on our set-theoretic assmnptions. 

We shall use the result by Silver stating that if X is an uncountable Borel 

subset of [0,1] and G is a countable group of Borel automorphisms of X, then 

there exists an uncountable Borel set S which intersects every G-orbit (i.e. a set 

of the form {gx: g e G}, x e X) in at nmst one point (see [12, p.1]). 

PROPOSITION 4.3: I f  G is a countable group of Bore1 automorphisms of [0,1], 

then there exists a G-invariant, a-~nite, nonatomic measure on the a-algebra I3 

of Borel subsets of [0,1]. 

Proof." Let ..q be the Borel set given by Silver's result quoted above. It is well- 

known (see [10, Theorem 8.1]) that there exists a probability, nonatomic measure 

v on the a-algebra of Borel subsets of S. 

Define a measure # on B by: 

.(B)=  ,(SngB) forBeB. 
gEG 

Clearly, p is G-invariant, a-finite and nonatomic. | 

PROPOSITION 4.4: The following conditions are equivedent: 

(i) For every countable group G of measurable trrmsfonnations of the Lebesgue 

space ([0, 1], £, A) there exists a G-invariaat, a-finite, nonatomic measure 

o n  ff~. 
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(ii) There exists a probability, nonatomic  measure detlned on the power set of 

[0,11. 

Proof: The implication (i):~(ii) was essentially established in the course of 

proving Proposition 4.2. Indeed, the negation of (ii) implies that every a-finite, 

nonatomic measure on £ is absolutely continuous with respect to A, so Ornstein's 

group contradicts (i). 

To prove the converse, let G be an arbitrary group of measurable transfomm- 

tions of ([0,1], £,  A). Since each 9 E G is equal, modulo a A-null set, to a Borel 

function and the group G is countable, there exists a Borel set X C_ [0, 1] such 

that A(X) = 1 and 9 [ X is a Borel automorplfism of X for every g E G. By 

Silver's result, there is an uncountable Borel set S which intersects each G-orbit 

in at most one point. 

Since the cardinality of S is the sazne as that of [0,1], condition (ii) implies 

that  there exists a probability, nonatomic measure t/defined on the power set of 

S. 

Define a measure ~ on £ by: 

#(A)=~-~v(SAgA) for A E £. 
gEG 

Clearly, p is G-invariant, a-finite and nonatomic, l 

It is well known that the status of the statement that there exists a probability, 

nonatomic (countably additive!) measure defined on the power set of [0,1] is most 

probably that of an additional set-theoretic axiom. It certainly cannot be proved 

in the usual set theory (say, ZFC) since its negation follows from the Continuum 

Hypothesis. On the other hand, in the common belief of specialists, it cannot 

also be in ZFC disproved and its interesting consequences are widely studied (see 

[11, p.468] and [13, p.138]). 
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